

e- ISSN: 2795-2215

Techno-economic and Performance Analysis of Associated Gas Utilization in Gas Turbines

Roupa Agbadede¹, Isaiah Allison²

¹Nigeria Maritime University, Okerenkoko Warri Delta State, ²Nigeria Army Engineers, Lagos

roupaagbadede@yahoo.com

ABSTRACT

This study focuses on the economic viability of using associated gas (A-gas) as a fuel in gas turbines for power generation applications. GASTURB simulation software was employed in modelling the natural gas and associated gas. Also, it was used for simulating the performance of the gas turbine using the two fuels. When natural gas and A-gas were compared for clean condition, the heat rate of natural gas was found to be 9923 kJ/kWh as against 9974kJ /kWh for an A-gas Fuel. Also, the plots of clean and degraded conditions for natural gas showed that heat rate increased from a clean case of 9923 kJ/kWh to 10178 kJ/kWh for a degraded condition. Techno-economic analysis conducted showed that the annual cost saving for utilizing the A-gas, when obtained at no cost is about \$14.1million over the annual cost of natural gas.

KEYWORDS: Gas turbine, Performance analysis, Associated gas, Natural gas, Techno-economic analysis.

Cite This Article: Agbadede, R., & Allison, I. (2020). Techno-economic and Performance Analysis of Associated Gas Utilization in Gas Turbines. Journal of Newviews in Engineering and Technology (JNET), 2 (1), 34-42.

1. INTRODUCTION

In the past, gas flaring was used to routinely dispose of flammable gases that were either unusable or uneconomical to recover. However, modern technology has introduced ways and means of harnessing associated gas (A-gas) for very productive uses. It is estimated that about 168 BCM (Billion Cubic Meters) of natural gas (NG) is flared yearly worldwide (equivalent to about 400 million tons of carbon dioxide). Nigeria accounts for 23 BCM, the biggest after Russia; about 13% of global flaring is attributed to originate from Nigeria (Anosike, 2010). About 1000 standard cubic feet (SCF) of A-gas is produced in Nigeria with each barrel of oil. Hence oil production of 2.5 million bpd amounts to about 2.5 billion SCF of A-gas produced daily (Igbatayo, 2007). This amounts to an annual financial loss of about \$2.5 billion (Ogbe et al., 2011). Sonibare and Akeredolu (2007) showed that, of the total NG production in Nigeria, about 17% is re-injected, 33% used commercially and 50% flared (equivalent to about 75% of total A-gas produced.

A study carried out for the Bureau of Public Enterprises of Nigeria estimated that each year the country loses between US\$500 million and US\$2.5 billion to gas flaring. Experts believe Nigeria is burning billions of Dollars from its oil wells and letting potential profits go up in flames. The massive amount of NG flared annually is an economic waste gives enormous and off greenhouse gas emissions, causes air pollution, have health implications and results in acid rain. By using the gas for energy, instead of flaring, much of the acute power needs in Nigeria would be fulfilled. Nigeria is in need of extra power generation and the gas that is being burned could go a long way

e- ISSN: 2795-2215

Gas turbines (GTs) burn NG, whether clean or impure, to produce power. Impurities have effects and cause the LHV (Lower Heating Value) of one fuel to differ from that of another. The impurities initiate the process of degradation of the GT or components along the hot gas path. The peak energy demand forecast for Nigeria is 10200 MW, but the current generation capability is 5157 MW. The highest generation recorded as at April 2012 stood at 3462 MW while the lowest generation recorded was 2444 MW (Allison, 2014). Allison (2014) revealed that though the generation capability of most Power plants in Nigeria is much more than the actual generation; unutilized generation capability is almost equal to the actual generation. The unutilized electricity generation capability of existing gas stations was attributed to gas shortages. This underscores the need for efforts to harness A-gas so as to achieve the full generation capability. However, there performance and degradation of hot components implications of utilization Associated gas in gas turbines for power generation purposes. This study aims to present the economic benefits of utilizing the associated gas in gas turbines.

2. MATERIALS AND METHODS

In modelling the various fuels, the GASTURB details 5.1 software was employed. This software is capable of modelling the different kinds of fuels ranging from gaseous to liquid fuels. Data obtained from field observation were employed, to ascertain various chemical composition and volume of compounds which constitute the natural gas and associated gas (A-gas) fuels under investigation. Tables 1 and 2 show the various chemical compound, which constitute the natural gas and A-gas fuels.

These data were utilized to model the corresponding fuels using the GASTURB details. Figures 1 and 2 show the implanted field data on the GASTURB 5.1 details simulation software interface when modelling the natural gas and A-gas fuels respectively. Consequent upon obtaining the fuel composition/mixture from field data presented in Table 1, the steps taken to model the fuels in the GASTURB details 5.1 interface (see Figure 1) are provided:

- 1- Enter a name for the new fuel
- 2 Enter the fuel composition
- 3 Enter the path to FCEA2.exe
- 4 Enter the path to GASTURB
- 5 Create CEA temp rise input
- 6 Run FCEA2 with that input
- 7 Create CEA gas prop input
- 8 Run FCEA2 with that input
- 9 Make GASTURB files

Consequently, the fuel is created in the GASTURB details 5.1 and this is then exported to the GASTURB 11, to run the performance simulations.

Table 1: Natural gas fuel composit	tion
------------------------------------	------

Compound	Formula	Vol. %
Methane	CH_4	85
Ethane	C_2H_6	8.8
Carbon dioxide	CO_2	0,7
Carbon monoxide	CO	0.43
Hydrogen	Н	0.17
Hydrogen Sulphide	H_2S	0.17
Oxygen	O_2	0.33
Nitrogen	N_2	4.4

Available online at http://www.rsujnet.org/index.php/publications/2020-edition

e- ISSN: 2795-2215

👂 Create input data for the N	ASA CE	A codo						
File View Make Hele	ASA CEA	4 COUE						
Prile view iviake melp								
Path to CEA								
C:\Details5								
Path to GasTurb Details or to Gas	Turb							
C:\Details5								
Name of the new fuel:				Maximum Fi	uel-Air-Ratio	.08		
Natural Gas								
Reactants in thermo inn:		Reactant	in Lib	Formula	Ass Enth	Molec W	Mole Frac	Mass Frac
Nedeclarits in thermolinp.		CH4	yes	C1H4	-74.6	16.0425	0.85	0.75295
NH2OH		C2H6	yes	C2H6	-83.8515	30.069	0.088	0.146109
NO		CO2	yes	C102	-393.51	44.0095	0.007	0.0170106
NO2		CO	yes	C101	-110.535	28.0101	0.0043	0.0066505
NO3		H2	yes	H2	0	2.01588	0.0017	0.0001892
N2		H2S	yes	H2S1	-20.6	34.0809	0.0017	0.0031991
NCN		02	yes	02	0	31.9988	0.0033	0.0058307
N2H2		N2	yes	N2	0	28.0134	0.044	0.0680603
NH2NO2								
N2H4								
N2O								
N2O3								
N2O4								
N2O5								
N3								
- N3H								-
00								
02	E							
b - Liquid Reactants								
, Equil Robotanto	*							
Treate CEA Temp Rise Input						Sum	1	1
View CEA Temp Rise Input								
Can View CEA Temp Rise Output								
Create CEA Gas Property In	put							
💱 View CEA Gas Property Inp	ut							
Can View CEA Gas Property Ou	tput							
Andre GasTurb Files								

Fig 1 Screen shot for modelled natural gas fuel

Т	able	2:	A-gas	fuel	com	position
-						

Component	Vol. %
Water	0.26
Nitrogen	0.61
Carbon dioxide	2.59
Hydrogen Sulphide	0.001
Methane	78.81
Ethane	10.46
Propane	4.62
Iso-buthane	0.79
N-butane	0.97
Iso-pentane	0.31
N-pentane	0.27
N-hexane	0.21
N-heptane	0.10

Path to CEA							
C:\Details5							
Path to GasTurb Details or to GasTurb							
C:\Details5							
				_			
Name of the new fuel:			Maximum Fu	el-Air-Ratio 0	.08		
A-Gas							
Reactants in thermo.inp:	Reactant	in Lib	Formula	Ass Enth	Molec W	Mole Frac	Mass Frac
	CH4	yes	C1H4	-74.6	16.0425	0.7881	0.604768
	C2H6	yes	C2H6	-83.8515	30.069	0.1046	0.150448
СНЗОН	СЗН8	yes	C3H8	-104.68	44.0956	0.0462	0.0974479
- СНЗООН	E C4H10,isobutane	yes	C4H10	-134.99	58.1222	0.0079	0.0219636
CN	C4H10. n-butane	no	C4H10		58.123	0.0097	0.0269684
CNN	C5H12. iso-Pentane	no	C5H12		72.1498	0.0031	0.0106987
CO	C5H12. n-Pentane	no	C5H12		72.1498	0.0027	0.0093182
COS	Hexane	no	C6H14		86.1766	0.0021	0.0086565
CO2	Heptane +	no	C7H16		100.203	0.001	0.0047931
COOH	Water	no	H201		18.0152	0.0026	0.0022405
CS	N2	yes	N2	0	28.0134	0.0061	0.0081739
CS2	CO2	ves	C102	-393.51	44.0095	0.0259	0.0545232
		/					
C2H							
C2H2, acetylene							
CH2CO katana		-					
		_					
CH3CN		_					
- CH3CO.acetvl		_					
0084	*						
3 Create CEA Temp Dise Input					Sum	1	1
nd							
View CEA Temp Rise Input							
View CEA Temp Rise Output							
Create CEA Gas Property Input							
🕸 View CEA Gas Property Input							
2 View CEA Gas Property Output							

Fig 2 Screen shot for modelled A-gas Fuel

2.1 Engine Performance Simulations

Following the completion of the modelling of the various fuels, an engine configuration was adopted to investigate the performance. This engine configuration was selected based on intended application, which is power generation. The engine adopted and modelled in the simulation software was inspired from the LM2500 class of GE gas turbines. Figures 3 and 4 show the Twin Shaft engine configuration and schematic employed for the investigations, while Table 3 depicts the engine design specifications.

e- ISSN: 2795-2215

Fig 3 Twin shaft aero-derivative gas turbine engine configuration

Fig 4 Twin shaft aero-derivative engine schematic

		able 3:	Engine	design	specifications	
--	--	---------	--------	--------	----------------	--

Design Parameters	Values
Power Output	25 MW
Pressure Ratio	18
Thermal Efficiency	34%
Mass Flow Rate	70kg/s

Consequent upon modelling natural gas and Agas Fuels in the GASTURB 5.1 details, the two modelled fuels were imported into the GASTURB 11 version (see Figures 5 and 6 respectively), to simulate the overall performance of the different fuels in the gas turbine. Table 4 shows the fuel heating value of the natural gas and A-gas fuels extracted from the design point simulation interface (see Figures 5 and 6 respectively).

File Edit Units Components	Define Batchjob Options View Task Run Help			
🔁 Read	HPT Clearance Exhaust Loss Heat Exchanger Test Analysis	Application Steam Cool	ing Water/Steam Fuel:	
File History	Basic Data Air System Comp Efficiency Comp Det	gn HPT Efficiency	PT Efficiency Natural Gas	•
	🛉 Flight 🚽 Testbed 📓 Power Generation			
Save as	Ambient Pressure Ps0	kPa 101 324	5	
🍏 Print	Ambient Temperature Ts0	K 288 15		
 Switch to Imperial Units 	Ambient Relative Humidity [%]	60		
de Quitala ta Ol Unita	Ref Ini Press Loss (Ps0-P2)/Ps0	0		
<p si="" switch="" td="" to="" units<=""><td>Ref Exh Press Loss (Ps8-Ps0)/P8</td><td>0</td><td></td><td></td></p>	Ref Exh Press Loss (Ps8-Ps0)/P8	0		
Propeller Map	Absolute Inlet Press Loss	kPa 0		
HP Compressor Map	Absolute Exhaust Press Loss	k <mark>Pa</mark> 0		
External Load	Inlet Corr. Flow W2Rstd	ka/s 70		
Composed Values	Intake Pressure Ratio	inactive	a	
	Pressure Ratio	18		
Herations	Burner Exit Temperature	K 1530		
🖳 Convergence Monitor	Burner Design Efficiency	0.999		
Q Nomenclature	Burner Partload Constant	1		
- Nomenciature	Fuel Heating Value	MJ/kg 49.736	5	
	Overboard Bleed	kg/s 0		
	Power Offtake	kW 30		
	HP Spool Mechanical Efficiency	0.998		
Select a Task:	Burner Pressure Ratio	0.97		
🔆 Single Cycle	Turb. Interd. Ref. Press. Ratio	0.975		
Parametric Study	Turbine Exit Duct Press Ratio	0.98		
	Nozzle Pressure Ratio	1.03		
Optimization	Nozzle Thrust Coefficient	1		
+ Sensitivity	LP Spool Mechanical Efficiency	0.978		
Monte Carlo	Nominal PT Spool Speed [RPM]	20000		
Run				

Fig 5 Screen shot of modelled natural gas fuel on GASTURB 11 interface

	Lista menution. I Paciente Prais - Lista Provinsifis Laterariadae	a Applicatio	n Steam Cooling Water/Steam	Fuel.
File History	Basic Data Air System Comp Efficiency Comp C	Design H	PT Efficiency PT Efficiency	A-Gas
Sam 20	Tight Testbed E Power Generation			
	Ambient Pressure Ps0	kPa	101,325	
9 Phill	Ambient Temperature Ts0	ĸ	288,15	
Switch to Imperial Units	Ambient Relative Humidity [%]		60	
0- Switch to SI Units	Ref Ini Press Loss (Ps0-P2)/Ps0		¢	•
Dramallas Man	Ref Exh Press Loss (Ps8-Ps0)/P8		0	•
e engenn map	Absolute Inlet Press Loss	KP3	0	•
HP Compressor Map	Absolute Exhaust Press Loss	KP1	0	
& External Load	Inlet Corr. Flow W29std	ko/s	70	
7 Composed Values	Intake Pressure Ratio		inactive	
A ANIMALA LINES	Pressure Ratio		18	
Rerations	Burner Exit Temperature	к	1530	
Convergence Monitor	Burner Design Efficiency		0,999	
Nomenclature	Burner Particad Constant		1	
	Fuel Heating Value	MJ/kg	45,2229	
	Overboard Bleed	kg/s	0	
	Pawer Offake	kW	30	
	HP Spool Mechanical Efficiency		0,998	
elect a Task:	Burner Pressure Ratio		0.97	
Single Cycle	Turb Interd Ref. Press. Ratio		0,975	
Parametric Study	Turbne Exit Duct Hress Rabo		0.98	
Optimization	Nozzle Messure Kabo		1,00	
Sancitada	1 P Snool Mechanical Efficiency		0.978	
- Senatively	Naminal BT Seend Snaad (BPUI)		20000	
Monte Carlo				
	1			

Fig 6 Screen shot of modelled A-gas fuel on GASTURB 11 interface

Table 4: Fuel heating value				
Fuel Type	Fuel Heating Values			
	(MJ/kg)			
Natural gas	49.7365			
A-gas	45.2229			

To conduct a comparative performance analysis on the two fuels, a twin shaft engine shown in Figure 3 was modelled. The fuels modelled were then simulated in the GASTURB 11 simulation software, to ascertain the performances of the various fuels. In simulating the performance of the two fuels, namely natural gas and A-gas, the clean and degraded operating conditions for both fuels were considered. The degradation simulations were also considered because in real life scenario, the degradation in gas turbines performance is unavoidable even when operated under the best possible conditions due to several degradation mechanisms. One of the key factors that lead to compressor performance degradation during plant operation is compressor fouling. This is the adherence of particles and small droplets to the blading surface (Leusden *et al.*, 2004). Also, degradation simulations are considered because of the A-gas which contains impurities that deposit and degrade the blade performance.

It is well-known fact that during operation, gas turbine components deteriorate in performance. This is because gas turbines being air breathing machines ingest large amount air flow, which contains contaminants ranging from dust particles to soot, from salt to oil etc. that deposit on the surface of the compressor blades, thereby resulting in performance deterioration. Apart these factors mentioned above, there is also degradation the gas turbine associated with aging of components, which is wear and tear. Hence, this the relevance considering underscores of degradation investigation in this study.

Stalder (2001) in his experimental study, observed 10% degradation in power output for a power plant running over 4000 operating hours without any form of compressor cleaning. Also, Lakshminarasimha and Saravanamutto (1986) found from open literature that a reduction in 5% inlet mass flow will result in a compressor efficiency drop of about 2.5%. This would translate to a power output reduction of about 10%.

Based on the deductions from these literatures, a flow reduction in inlet mass flow and efficiency of 5 and 2.5% respectively, were adopted and implanted to simulate the effects of degradation in this study. In addition, it also assumed that the 5% reduction in mass flow and 2.5% occurred over 4000 operating hours without any form of compressor cleaning or maintenance activity.

Two different scenarios, namely comparison of natural gas and A-gas fuels and clean and degraded

e- ISSN: 2795-2215

conditions were investigated. It is worthy to note that the simulations were conducted under a constant load condition. Also, the annual fuel costs for utilizing natural gas and associated gas were calculated using equation (1):

Annual fuel cost = Engine power output × Heat rate × Operating hours per year × Fuel cost

(1)

(Ganapathy, 1993)

3. **RESULTS AND DISCUSSION**

The bar chart plots of Figures 7 to 10 show the comparison of natural gas and A-gas fuels for clean and degradation operating conditions obtained from the simulation results. As can be seen in Figure 7, when Natural Gas and A-gas fuels were compared for clean condition, the heat rate of Natural Gas is 9923 kJ/kWh as against 9974kJ /kWh for an A-gas Fuel, which translates to 0.5% change.

Also, in Figure 7, when the plots of clean and degraded conditions were compared for natural gas, the heat rate of clean is 9923 kJ/kWh as against 10178 kJ /kWh for a degraded condition, which translates to 2.5 % change.

Fig 7 Heat rate against operating conditions

As can be seen from Figure 8, when Equivalent SFC of natural gas and A-gas were compared at

Copyright © 2019 JNET-RSU, All right reserved

clean condition, the equivalent specific fuel consumption of natural gas is 0.19953 kg/kWh as against 0.231298 kg/kWh for A-gas fuel, which is approximately 13.7% change between the two fuels. This can be attributed to the higher Fuel Heating Value of Natural Gas, which is 49.7365MJ/kg as against A-Gas of 45.2229MJ/kg.

Fig 8 Equivalent specific fuel consumption against operating conditions

Figure 9 shows plots thermal efficiency for natural gas and A-gas. As expected, the thermal efficiency of the natural gas is higher than that of the A-gas. This is because of the lower heat rate of the natural gas. Hence, resulting in higher thermal efficiency because it is the inverse of heat rate. Also, from the figure, the clean case produced higher thermal efficiency than the degraded condition. The reduced thermal of degraded condition is as a result of lower pressure ratio arising from the degraded condition.

Fig 9 Thermal efficiency against operating conditions

The plot of fuel flow in Figure 10 is similar to that of Equivalent Specific Fuel Consumption in Figure 8. At clean condition, the percentage change in fuel flow between A-Gas and Natural Gas is approximately 13.7%. The higher fuel flow of the A-Gas can be attributed to its lower Fuel Heating Value. Hence, demanding higher amount of fuel to maintain the required power setting.

Fig 10 Fuel flow against operating conditions

The investigation of the influence of different fuel composition and degradation have presented a good understanding of how both scenarios affect the overall performance of the gas turbine; in particular, increased fuel consumption when the engine is running at constant load condition. It is worth mentioning that the focus of this study is on economic viability of harnessing/utilizing associated gas, to prevent energy wastage and other environmental hazards associated with gas flaring.

According to Boyce (2002), the operating cost which essentially is the cost of energy account for about 70-80% percent of the life cycle cost of any power plant. The remaining percentage is shared between the costs of a new power plant and maintenance costs. About 7-10% and 15-20% are the costs of a new power plant and maintenance costs respectively. This underscore the relevance of this study especially in today's world where prices of fuel are so high and environmental issues are a major concern. It is assumed that the gas turbine under investigation operated 4000 hours per year. The operating hours of the gas turbine depends on the energy requirements from the flow station and the neighbouring communities and the availability of fuel (gas). It is therefore presumed that the gas turbine operated for an average of twelve hours daily, which translates to approximately over 4000hours for one year.

3.1 **Comparing cost of A-gas and NG fuels**

It is worthy to note that in conducting the economic analysis, the production cost of the two fuels and capital cost of gas turbine were not considered. In addition, the details regarding redesigning of the gas turbine combustor so as to accommodate the Agas fuel was not taken into account. Hence, the gas turbine combustor adopted in the case, is that which utilizes natural gas as the fuel, and it was adopted for the A-gas fuel investigation. This procedure can be considered acceptable.

However, using hydrogen on a gas turbine combustor designed for natural gas application may have some negative implications, especially the degradation in performance of the turbine blades due impurities of the A-gas. Ganapathy (1993) method of estimating the annual cost of fuel is

e- ISSN: 2795-2215

adopted to conduct the economic analysis in this study. According to Ganapathy (1993), annual fuel cost = engine power output x heat rate x operating hours per year x fuel cost.

3.1.1 Natural Gas Cost Analysis

Annual fuel cost = engine power output x heat rate x operating hours per year x fuel cost (Ganapathy, 1993).

Table 5: Natural gas cost analysis

Operating Parameters	Values
Power Output	25492kW
Heat Rate	9929.9kJ/kWh
Operating Hours	4000hrs/year
Fuel Cost	\$14.1/MBtu

Therefore, utilizing the data of Table 5, annual cost of natural gas fuel=25,492kW x 9406 Btu/ kWh x 4000 hr x \$14.71 /MBtu= \$14.1Million

3.1.2 A-gas cost analysis

The cost of A-Gas is assumed to be zero because it is an impure gas and usually flared or wasted.

Therefore, it is assumed the A-Gas is obtained at no cost. Although in real scenario may be cost implications; however, in this study, it was not considered.

Table 6: A-gas cost analysis

Operating Parameters	Values
Power Output	25492kW
Heat Rate	9974.47kJ/kWh
Operating Hours	4000hrs/year
Fuel Cost	\$0/MBtu

Annual Fuel Cost for A-Gas: 25,492kW x 9453Btu / kWh x 4000 hr x \$0 /MBtu= \$0

4. CONCLUSION

This study examines the economic viability of using associated gas as a fuel in gas turbines for generation applications. power GASTURB simulation software was employed in modelling the natural gas and associated gas (A-gas) fuels and simulating the performance of the two fuels. When the equivalent specific fuel consumption of natural gas and A-gas were compared at clean condition, the Equivalent specific fuel consumption of natural gas is 0.19953 kg/kWh as against 0.231298 kg/kWh for A-gas fuel, which is approximately 13.7% change between the two fuels. Similarly, the fuel flow follows same trend as the equivalent SFC.

Also, from the economic analysis, when A-gas is obtained at no cost, the annual cost saving for utilizing the A-gas is about \$14.1million.

Although, all the gas turbine performance parameters investigated favour the utilization of natural gas as a fuel in the twin shaft gas turbine as against A-gas. However, as mentioned above, if the A-gas which usually flared or wasted can be obtained at no cost, the annual cost saving for utilizing the A-gas is about \$14.1million.

5. ACKNOWLEDGEMENT

The authors are exceedingly grateful to the CEO of GASTURB.de, Mr Daniel Weintraub for his technical support.

REFERENCES

Akeredolu, F. A. & Sonibare, J. A. (2007). Safety Implications of Bridging the Energy Supply/Demand Gap in Nigeria through Associated Natural Gas Utilization. *Energy and Environment*, 18 (3-4), 363-372.

Allison, I. (2014). Techno-economic Evaluation of Associated Gas Usage for Gas Turbine Power Generation in the Presence of Degradation and Resource Decline.

Journal of Newviews in Engineering and Technology (JNET) Vol 2, Issue 1, March, 2020

Available online at http://www.rsujnet.org/index.php/publications/2020-edition

e- ISSN: 2795-2215

(Unpublished Ph.D. Thesis), Cranfield university, UK.

- Anosike, C. R. (2010). Unhealthy Effects of Gas Flaring and Way Forward to Actualize the Stopping of Gas Flaring in Nigeria. Nigerian Annual International Conference and Exhibition, 01/01/2010, Society of Petroleum Engineers, Tinapa - Calabar, Nigeria
- Techno-economic Anosike, N. Β. (2013). Evaluation of Flared Natural Gas Reduction and Energy Recovery Using Gas-To-Wire Scheme. (Unpublished Ph.D. Thesis). Cranfield university, UK.
- Boyce, M. P. (2002). Gas Turbine Engineering Handbook, (2nd ed.). Gulf Profession Publishing.
- Ganapathy, V. (1993). Steam plant calculations Manual, (2nd Ed.) CRC press. https://www.google.com/search?ei=wws8Xt 6EH4Ge1fAPhvS66A0&q=current+price+o f+natural+gas+per+btu&oq=current+price+ of+natural+gas (accessed 06 February 2020)
- Igbatayo, S.A., (2002). Achieving Nigeria€™s Gas Challenges Flares-out Target: and Implications for Environmental Sustainability and Global Climate Change. Nigerian Annual International Conference and Exhibition, 01/01/2007, Society of Petroleum Engineers, Abuja, Nigeria.
- Lakshminarasimha, A. N. & Saravanamutto, H. I. H. (1986). Prediction of Fouled Compressor Performance Using Stage Techniques. American Society of Mechanical Engineers, Fluids Engineering Division (Publication), 37, 59.
- Leusden, C. P., Sorgenfrey, C. & Dümmel, L. Performance Benefits (2004).Using Siemens Advanced Compressor Cleaning System. Journal of Engineering for Gas Turbines and Power, 126 (4), 763-769.

- Ogbe, E., Ogbe, D. O., & Iledare (2011). Optimization of Strategies for Natural Gas Utilization: Niger Delta Case Study. Nigerian Annual International Conference and Exhibition, 01/01/2011, Society of Petroleum Engineers, Abuja, Nigeria.
- Stalder, J. (2001). Gas Turbine Compressor Washing State of the Art: Field Experiences. Journal of Engineering for Gas Turbines and Power, 123 (2), 363-370.

NOMENCLATURE

- A-gas Associated gas
- BCM **Billion cubic meters**
- British thermal unit BTU
- GTGas turbine
- PHCN Power Holding Company of Nigeria
- PR Pressure ratio
- SCF Standard cubic feet
- SFC Specific fuel consumption
- Т Total temperature
- Turbine entry temperature TET

