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ABSTRACT 
The problem of incipient fault localization and 

classification in power transmission lines is an emerging 

area of power system research that seeks to determine the 

likelihood or probability of fault just before its occurrence. 

This involves the determination of power line fault 

signatures and online characterization of line parameters. 

This research paper applies a simulations and data driven 

based approach emphasizing resonance theory of 

transmission lines and neural intelligence for effective 

fault location determination and incipient fault prediction 

in transmission lines. Simulations considering the 

NeuroAMI predictor for the PSD signals showed that apart 

from peaks of about 25V/k-Hz, 27V/k-Hz and 35V/k-Hz, the 

proposed neural predictor fault location estimates closely 

matched the expected fault locations. Considering the 

data-driven approach based on a public dataset, the 

proposed NeuroAMi technique showed superior RMSE 

values over the conventional BP-FFANN. 
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1. INTRODUCTION 

Power system have for long been berserk with 

the burden of maintaining a continuous state of 

uninterrupted energy supply. However, due to 

various degrees of faults, the tendency to 

maintain the much-needed power stability status 

quo has been unachievable. Thus, ongoing 

researches focus on overcoming the various 

faults possible in power transmission lines 

considering specifically the insulation 

degradation the short-circuit line faults and 

localizations and the power network component 

faults such as in transformers (Negrão et al., 

2013; Stefenon et al., 2020; Tayeb et al., 2011; 

Roostaee et al., 2017; Jembari et al., 2019; 

Mustari et al., 2019; Li et al., 2019; Contreras-

Valdes et al., 2020).  

 

While these approaches have proven particularly 

useful, there has still been the problem of faults 

leading to catastrophic failures in some instances 

thereby requiring the preventative actions. As a 

follow up to this challenge, the incipient 

determination of faults is currently gaining 

traction. Thus, researchers find out that it is 

better to identify the fault earlier through real 

time monitoring systems considering variety of 

fault signatures (Andresen et al., 2018). 

In this paper, a pragmatic transmission line (TL) 

monitoring and localization solution is proposed 

that follows from the theory of resonant 

frequencies in power transmission lines and 

neural predictive systems as found in mammalian 

brains. The idea behind this approach is to marry 

the continual learning capability of human brains 

with the sound principles of resonant 
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transmission lines for effective monitoring and 

incipient localization of faults in power 

transmission lines and in real time. With the 

proposed approach, it should be possible to 

determine the TL faults in advance and hence 

safeguard the power network from an imminent 

collapse. 

 

2. MATERIALS AND METHODS 

This section describes the proposed transmission 

line (TL) resonance model as in section 2.1 and 

the neural prediction technique employed (see 

section 2.2). The TL resonance model includes 

the neural prediction logic in a combined 

incipient fault monitoring and prediction system.  

 

2.1. Resonance Model of Transmission Line 

The resonance model of a TL considering Single-

Line-to-Ground faults is based on the equivalent 

pi connected circuit shown in Figure 1. 

 

 
Figure 1. Transmission Line model for 

resonant studies in presence of SLG faults  

(Source: Govindarajan et al., 2015). 

 

In the model of Figure 1, the electrical 

parameters are distributed along the length of the 

TL. The core system line parameters of interest 

for include the line impedances, z, and shunt 

admittance, γ, which are computed according to 

(1) and (2): 

 

xx LjRz +=
     (1) 

xCj =
     (2) 

Where: 

Rx = Resistance of line per unit length 

Lx = Inductance of line per unit length 

Cx = Capacitance of line per unit length 

 

If we consider a cable of length say l, the series, 

and parallel impedances Zs and Zp are computed 

as in (Glover et al., 2012): 
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where, 

γ = line propagation constant 

Zc = line characteristic impedance 

 

Without loading, the time-domain transfer 

function of the TL system may be represented as: 

 

)cosh(

1

lZZ

Z

V

V
H

PS

P

S

R
c


=

+
==

  (5) 

 

Using s-function representation, (5) is re-

modeled as: 
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Finally, to obtain the resonant frequencies, snc, 

the roots of the denominator part in (6) must be 

solved; the solution is as provided in (7). 
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Since at most times, 1/(LC) >> (R/L)2, the roots 

are approximated as in (8): 
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From (8), a resonant peak will appear when the 

TL real response frequency is equal to the 

imaginary part. This follows from theory and the 

approximate resonant frequencies are (Lin & 

Holbert, 2009): 
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and, 
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The models in (9) and (10) show that resonant 

frequencies will occur in odd multiples. 

 

Thus, these models can be used to re-represent 

further higher dimensions in scale. 

 

A real time systems level simulation model 

describing the aforementioned operation is as 

shown in Figure 2. 
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Figure 2. Real Time Simulation model. 

 

 

2.2. Neural Prediction Technique 

The considered neural predictive approach is 

based on a theory called auditory machine 

intelligence (AMI) that utilizes the perception of 

humans to an odd-ball stimulus and intelligent 

processing in auditory cortex to form invariant 

predictions in time and space. This approach 

fundamentally includes the following (Osegi & 

Anireh, 2019): 

i. A set of input detectors. 

ii. A processing logic based on Change 

Detection (CD) and a Model 

Adjustment (MA) formula. 

iii. A learning algorithm using Hebbian style 

reinforcement rules. 

 

Using the aforementioned scheme, it is possible 

to generate continual predictions of a sequence of 

time-stepped inputs. 

 

The architecture of the proposed AMI neural 

solution is as shown in Figure 3. In this 

architecture, mathematical formulas are labeled 

as an operator sign while functional modules and 

a trigger block define the key functional routines 

and time series attributes used in the control 

initializations of the AMI respectively. A Binary 

Encoder and Binary-to-Integer Transformer 

module are used to convert the set of input 

detectors labeled Xt, from a multivariate to a 

univariate time series. By default, a Change 

Detection (CD) mismatch processing function is 

enabled while the trigger control is set to 0. 

When a transition is needed from a univariate to 

a multivariate time series processing, the trigger 

is enabled and the Model Adjustment (MA) 

processing of Xt is activated. If the converse is 

the case, CD processing only is activated. 
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Figure 3. AMI Neural Architecture  

(Source: Osegi & Anireh, 2019). 

 

 

The primary predictions of the Neural AMI 

solution are described by Phase-1 prediction 

equations and as follows: 

 

First, we define a mean deviant point as in (11): 
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where, 

n = number of data points in a temporal sequence 

Sdeviant = the (n-1)th value of the temporal 

sequence 

Sdev = the difference between Sdeviant and Sstars 

Sstars = the (n-2)th values of the temporal 

sequence 

S* = sparse set of input sequences 

 

Next a prediction is performed using (12): 

)(meandevdeviantpred SSS +=
   (12) 

where, 

1−= 

ndeviant SS
    (13) 

2−= 

nstars SS
    (14) 

 

The Neural AMI technique processing and 

learning functions are also as described in 

Algorithms 1 and 2 respectively. 

 

 

Algorithm 1. AMI Processing Algorithm 

1: Initialize Spred, as prediction parameter, Sstars, 

as input sequences (standards) State, Sdev(mean) as 

deviant mean, j as iteration counter. 

2: for all s s.Sstars, &  j > 1, do 

3: Compute Sdeviant and Sstars using (13) and (14) 

4: starsdeviantdev SSS − // deviations from 

standards 

5: Compute Sdev(mean) using (11) 

6: Compute Spred using (12) and (13) 

7: Update Sdev(mean) using Algorithm 2 

8: end for 

 

 

Algorithm 2. AMI Learning Algorithm 

1: Initialize Spred, as prediction parameter, Sstars, 

as input sequences (standards) State, Sdev(mean) as 

deviant mean, Sdiff(1) as difference between Spred, 

Sdeviant+1 and Sdiff(2) as difference between 

Sdev(mean) and |Sdiff(1)|, lp as correction factor or 

bias. 

2: for all s s.Sstars do 

3: if Sdiff(2) > 0 

4: )1()()( diffmeandevmeandev SSS −
// Weaken deviant 

mean by a factor, |Sdiff(1)| 

5: elseif Sdiff(2) < 0 

6: )1()()( diffmeandevmeandev SSS +
// Reinforce deviant 

mean by a factor, |Sdiff(1)| 

7: else 

8: pmeandevmeandev lSS + )()(  

9: end if 

10: end for 

 

2.3. Implementation Details and Datasets 
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The strategy of how to implement the NeuroAMI 

incipient fault estimation borders on localization 

using the resonance theory model for a given line 

and classification considering a publicly 

available dataset (the VSB power line datasets) 

which was provided by Ostrava Technical 

University as a Kaggle competition dataset.  

The fault localization data comprised of several 

sequences of Power Spectral Density (PSD) 

voltage signals and was synthesized using a real 

time emulator as shown in Figure 4. To achieve a 

variety of signals, the simulation was re-run for a 

number of trial runs and for each trial run, the 

fault location was varied or kept constant and the 

corresponding PSD signals recorded. In Table 1, 

shows the TL parameter specifications used to 

generate the results.  

The VSB datasets consist of Partial Discharge 

(PD) signal measurements on the three power 

line phases. A sample of these data set is as 

shown in Table 2. 

 

Table.1. Key Transmission Line Specifications 

Parameter Value/Specification Unit 

Line Length 138 Km 

Circuit type Single NA 

Conductor 

cross-section 

350 mm2 

Resistance 0.0390 Ω/km 

Inductance 1.11 mH/km 

Capacitance 912.06 uF/km 

 

 

Table.2. Sample VSB Kaggle Dataset 

 

Signal_id id_measurement Phase Target 

0 0 0 0 

1 0 1 0 

2 0 2 0 

3 1 0 1 

4 1 1 1 

5 1 2 1 

6 2 0 0 

7 2 1 0 

 

Figure 4. Detailed schematic of the power 

transmission line for simulation studies. 

 

3. RESULTS AND DISCUSSION 

In this section simulations are done in 

MATLAB/SIMULINK based on existing line 

parameters of the TL of a section of Nigerian 

330kV network (Onitsha-Alaoji single circuit, 

see Table 1, Section 2, sub-section 2.3) and on 

the open dataset from the VSB Kaggle 

repository. 

 

3.1 System Level Simulations - No Fault 

situation 

Considering the detailed schematic in Figure 3, 

the simulation results is as presented in the graph 

(Figure 4) showing prediction based on Neuronal 

Auditory Machine Intelligence (NeuroAMI) 

technique - an approach of advanced technology 

in (Osegi & Anireh., 2019; Osegi et al., 2020). 
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Figure 5. PSD prediction response compared 

to actual values during no-fault simulation. 

 

 

3.2 System Level Simulations – Under Fault 

situation 

In the case of a fault in the transmission line, we 

consider a fault after line 2 – see the schematic of 

Figure 4. This corresponds to a fault at a location 

of 40km from the step-up transformer end and at 

a resistance of 0.1 Ω. The resulting simulation is 

as presented in the graph of Figure 5. 

The results (response graphs) in Figure 4 and 

Figure 5 are indicative of the close correlation 

between the actual PSD estimate and the 

predicted one. However, at peaks of about 

25V/k-Hz, 27V/k-Hz and 35V/k-Hz, there are 

noticeable discrepancies in the actual vs. 

predicted estimates during faulted case (see 

Figure 5). 
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Figure 6. PSD prediction response compared 

to actual values under fault conditions. 

 

 

3.3 Data driven simulations. 

Considering incipient fault predictions, data-

driven simulations were performed with a small 

sample data (VSB dataset) in comparison with 

the standard well known and popular back-

propagation trained Feed-Forward Artificial 

Neural Network (FFANN).  

The comparative results were reported in terms 

of the Root Mean Squared Error (RMSE) as 

shown in Table 3 for the power lines and for the 

first 100 samples of VSB dataset. The standard 

ANN (FFANN) followed the usual convention of 

training-testing data split with 60% for training 

and 40% for testing from the considered 

100samples and the simulations were performed 

for 5 trials and the mean computed. Also, a 

bivariate data splitting method using a scheme 

earlier proposed in (Osegi, 2021) was employed 

for the continual learning predictions in the 

proposed Neuro-AMI technique. In Table 3 is 

shown the individual trial errors for the different 

lines as per the FFANN predictions. 

From the results of Table 4, the comparative 

results considering a real world case study data 

showed the superiority of using proposed 

technique over the conventional FFANN. 
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4. CONCLUSION 

This research paper has proposed a Neural 

auditory machine intelligence (AMI) approach 

and simulation model to TL fault diagnosis in 

power system transmission network. It has also 

presented some initial results on the developed 

solution model and the results showed good 

predictive response of the considered approach.  

Currently, this research work is ongoing at the 

Department of Electrical Engineering, Rivers 

State University, Nigeria. Future work will 

incorporate real-time embedded microprocessor 

relaying logic to further enhance the proposed 

model features. Also, the proposed approach 

should be applied to different line configurations 

considering the varieties of existing line length 

and considering the gradual variation of the fault 

resistances.   
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