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ABSTRACT 
Production engineering technologies are ever advancing to 

tackle problems encountered in manufacturing of products 

and rendering of services. This paper presents a number of 

challenges encountered by producers, and the industrial 

revolutions that these producers have kickstarted to handle 

these production challenges, while also identifying leading-

edge production engineering technologies that have 

enabled these technological revolutions. The methodology 

employed was the systematic literature review of scholarly 

articles published between 2010 and 2021. The result of the 

research was the identification of some leading-edge 

production engineering technologies that are helping 

producers improve productivity such as robotics, smart 

factories and Internet of Things (IoT); Artificial Intelligence 

and predictive maintenance; 3D printing and additive 

manufacturing. 
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1. INTRODUCTION 

Production Engineering is a specialisation of 

Mechanical Engineering, that deals with the 

planning, designing, development, 

implementation, operation, maintenance, and 

management of all processes involved in the 

manufacturing of products or rendering of 

services. Traditional production activities are 

saddled with numerous challenges which affect 

productivity. Some challenges are manual 

handling and safety, maintaining the right 

inventory levels, lack of efficient and profitable 

production of customised and small-lot products 

through monitoring and controlling automated 

and complex manufacturing, stand-alone and 

segregated manufacturing and weak integration of 

production systems, product life cycle and 

intercompany value chain (Shi et al., 2020). Other 

challenges identified by Khan and Turowski 

(2016) include poor data integration and 

management, poor process flexibility as 

demanded by customisation and security of 

people, products and production facilities 

environment. With the advent of leading-edge 

technologies in production and manufacturing, 

organisations are additionally faced with 

challenges such as how best to implement and 

keep up with these technologies in order to 

achieve operational goals such as reduced costs, 

improved efficiency, increased safety and product 

innovation while staying relevant and 

competitive.  

 

Various industrial and technological revolutions 

have been provoked to combat the challenges of 

traditional production and manufacturing, from 

Industry 1.0 to Industry 5.0. The First Industrial 

Revolution also known as Industry 1.0 occurred 

around the 1780s and involved an evolution from 

traditional manufacturing processes to 

manufacturing processes which used water and 

steam. Moreover, the use of fuel sources such as 

steam and coal made machine use more feasible 

and allowed for faster and easier production and 

the possibility of all kinds of innovations and 

technologies. The Second Industrial Revolution, 

Industry 2.0, also known as the Technological 

Revolution occurred around the 1870s and saw 

the introduction of newer technological systems, 

especially superior electrical technology at the 

time, which enabled manufacturers to use more 

sophisticated machines and carry out mass-

production using assembly lines, thereby 

improving productivity. The Third Industrial 

Revolution occurred around the 1970s and began 

with the first computer era and involved the use of 
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electronics 

and Information Technology to improve 

automated production with the aid of the Internet, 

connectivity and renewable energy. Even though 

the automated systems of Industry 3.0 were 

dependent on human input and intervention, the 

era saw the use of these systems within assembly 

lines to perform human tasks using Programmable 

Logic Controllers (PLC). Industry 3.5 which 

occurred around the 1980s saw the offshoring of 

production to low-cost economies in order to 

reduce the costs of production further. 

 

The Fourth Industrial Revolution, Industry 4.0, 

which is the industrial revolution of today, is the 

period of smart machines, storage systems, and 

manufacturing facilities that could automatically 

share information, initiate operations, and control 

one another without the need for human 

interaction, all made possible with the aid of the 

Internet of Things (IoT). Rossi (2018) explained 

that Industry 4.0 brings robots, interconnected 

devices and fast networks of data within a factory 

environment together, to improve the productivity 

of the factory and execution of routine tasks that 

are best conducted by robots and not humans. The 

Fifth Industrial Revolution, Industry 5.0, which is 

the industrial revolution of the future, will see the 

return of human hands into the industrial 

framework and the reconciliation of humans and 

machines in order to work together to improve 

productivity. While the current Industry 4.0 era is 

concerned with the conversion of traditional 

factories into IoT-enabled smart facilities that use 

cognitive computing and interconnect through 

cloud servers, the Industry 5.0 era will have mass 

implementation of Cobotics where humans will 

be back in the industrial production process 

collaborating with the smart machines and 

systems. Therefore, workers will be upskilled to 

provide value-added tasks in production, leading 

to mass customisation and personalisation for 

customers (Rossi, 2018). This will create higher-

value jobs and enable workers and humans to 

focus on the responsibility of product and service 

design, enabling the development of products and 

services that are considerably more bespoke and 

personal. 

The main 

objective of this paper is to provide a description 

of the latest technologies that can help production 

companies improve productivity in the present 

day. The paper attempts to fill a research gap 

posed by the need for a study that aggregates the 

modern-day production engineering technologies. 

 

2. MATERIALS AND METHODS 

The methodology employed was the systematic 

literature review of scholarly articles published 

between 2010 and 2021, which were related to the 

topic of Leading-Edge Technologies in 

Production Engineering. The search engine 

utilised was Google Scholar and papers were 

sourced from various publishers. A five-phase 

process was followed in conducting the literature 

review.  Phase 1 was a pilot search of articles in 

order to get an in-depth understanding of the 

literature, Phase 2 was the location of the studies 

by encompassing a large body of relevant articles, 

Phase 3 was the development and use of a 

selection and evaluation criteria or 

inclusion/exclusion criteria such as articles being 

published between 2010 to 2021 and being 

published in English, Phase 4 was the analysis and 

synthesis of  the selected articles, Phase 5 was 

reporting of the results. 

 

3. RESULTS AND DISCUSSION 

The result of the literature review carried out was 

the identification of leading-edge production 

engineering technologies which provide advanced 

manufacturers with an advantage in 

manufacturing and production engineering. These 

technologies include robotics, smart factories and 

Internet of Things (IoT); Artificial Intelligence 

and predictive maintenance; 3D printing and 

additive manufacturing. 

 

3.1 Robotics, Smart Factories and Internet 

of Things 

Robotics refers to an interdisciplinary field that 

involves design, construction, operation and use 

of robots within production processes. In order to 

improve production rates, many organisations are 

implementing the use of advanced robots to 
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improve 

production. Nowadays, robotics is also offered as 

a service to allow organisations which cannot 

normally afford the cost of acquiring and 

implementing advanced robotics within their 

production processes to rent robots and use them 

as part of their workforce. 

A smart factory is a highly computerized 

production floor that continuously collects and 

shares data through connected machines, devices 

and production systems. The four intelligent 

features of smart factories as listed by Shi et al. 

(2020) include the ability to self-organize, learn, 

and maintain environmental as well as their own 

information for analysing their behaviours and 

abilities; interoperability and real-time control of 

the internet; high integration using robot vision 

systems and artificial intelligence technologies; 

and the use of virtual reality technology such as 

signal processing, animation technology, 

intelligent reasoning, prediction, simulation and 

multimedia technologies to virtualize 

manufacturing processes and products and 

facilitate the human-machine integration of smart 

factory. With the use of smart factories, 

companies will no longer need to set up unique 

production runs to fabricate identical products or 

parts, enabling customised production to be as 

affordable as mass production. These will aid the 

factories in becoming more efficient, with a 

decrease in raw material waste. Pech et al. (2021) 

enumerated some of the devices utilised in smart 

factories grouping them into motion, position, 

proximity and speed sensors which monitor the 

machine or product position on the production 

lines (Cottone et al., 2013; Luo et al., 2019; 

Shoaib et al., 2014); vibration and torque sensors 

which utilise Fourier transform signal processing 

to detect failures in machine components 

(Kiangala & Wang, 2018; Kozlowski et al., 

Uhlmann et al., 2017); acoustical, sound and 

ultrasonic sensors which utilise microphone 

devices together with machine learning to 

estimate relevant information such as the 

character of an object and its location (Kaptan et 

al., 2018; Ryu & Kim, 2020); pressure, force, 

touch and tension sensors which identify the 

pressure deviations in the object of interest or 

environment based on barometric, piezoelectric, 

capacitive, optical or resonant sensing principles 

(Musselman & Djurdjanovic, 2012); optical, light 

and machine vision sensors which capture visual 

data and conduct a digitisation process using 

machine learning algorithms (Mennel et al., 2020; 

Sergiyenko et al., 2018); temperature sensors 

which obtain temperature information directly 

using resistive temperature detectors, thermistors 

and thermocouples or indirectly using infrared 

sensors (Sadiki et al., 2019; Salvatore, et al., 

2017; Villalobos et al., 2020); liquid, flow, gas 

and chemical sensors which are useful for 

monitoring the current intensity in pipelines using 

magnetic, ultrasonic or thermal detectors (Chien 

& Chen, 2020; Farahani et al., 2014); electronic 

current, energy and magnetic sensors which 

measure the current draw of machines (Alberto et 

al., 2018; Jureschi, 2016; Zhang et al., 2019); 

virtual sensors which are embedded in the 

software layer of machines to enhance the 

knowledge of the machines (Al-Jlibawi et al., 

2019; Indri et al., 2019); and nuclear, chemical, 

microparticles and nanoparticles sensors which 

enable monitoring directly within the monitored 

object (Jia et al., 2021; Thakkar et al., 2021; Singh 

et al., 2021). 

 

Gillis (2021) described the Internet of Things 

(IoT) as a network of integrated computing 

devices, mechanical and digital machinery, 

objects, animals, or people with distinct 

identifiers and possessing the ability to transfer 

data without the need for human-to-human or 

human-to-computer interaction. With the use of 

IoT’s cheap, connected and increasingly abundant 

sensors, organisations can now monitor various 

aspects of manufacturing than ever before, 

including machinery, deliveries, and even 

employees. 

Figure 1 shows the principal benefits of 

manufacturing operations automation. 
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Figure 1: Benefits of Manufacturing 

Operations Automation (Christiansen, 2020). 

 

From Figure 1, the benefits of manufacturing 

operations automation include cost reduction, 

increased productivity, availability, reliability and 

performance. With cost reduction being the 

highest benefit of automating manufacturing 

operations (Christiansen, 2020). 

 

3.2 Artificial Intelligence and Predictive 

Maintenance 

Product supply chains are complex, stochastic 

systems that present logistics analysts with issues 

such as increasingly diverse and difficult to 

predict variable customer demand (Kantasa-ard et 

al., 2020). Machine learning, a subset of Artificial 

intelligence, enables these analysts to predict the 

amount of products/services that will be 

purchased during a definite future period. This 

information is crucial for producers to optimize 

their inventory levels and conduct replenishment 

decisions. Truly, machine learning methods have 

been shown to provide significantly less biased 

and more accurate forecasts than well-established, 

statistical methods (Kantasa-ard et al., 2020; 

Spiliotis & Makridakis, 2020). 

Machine breakdowns in the middle of a 

production run can have a negative impact on the 

schedule, cause delivery delays, or force 

employees 

to work overtime to make up for lost time (Pech 

et al., 2021). Predictive maintenance anticipates 

system breakdowns in order to save maintenance 

costs (Selcuk, 2016; Tortorella, 2018). Therefore, 

predictive maintenance provides a set of tools 

based on continuous monitoring of the machine or 

process, to determine when a particular 

maintenance operation is necessary (Bukhsh et 

al., 2019; Carvalho et al., 2019). Predictive 

maintenance is also related to production 

robotization and Internet of Things, as a result of 

the fact that it involves the use of intelligent 

sensors which aid in collecting large amounts of 

data, which are efficiently analysed to support 

intricate decision-making and management of 

complex systems (Pech et al., 2021). This allows 

for early detection of faults through tools based on 

historical data such as machine learning, thereby 

minimising maintenance costs, enabling 

implementation of zero-waste production, and 

reduction of the number of major failures. 

However, a challenge of predictive maintenance 

is the potential risk of Distributed Denial-of-

Service (DDoS) attacks, which is a malicious 

attempt to interrupt a targeted server, service, or 

network's routine traffic by flooding the target or 

its surrounding infrastructure with internet traffic. 

Figure 2 shows the most common applications 

and use cases of Artificial Intelligence in 

manufacturing. 

 
Figure 2: Applications of Artificial 

Intelligence in Manufacturing (Dilmegani, 

2020). 
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From Figure 2, the common use cases of Artificial 

Intelligence in manufacturing include quality 

control, inventory management, monitoring 

diagnostics, customer care, personalization of 

products/services and asset maintenance. With 

quality control being the area of highest 

application of Artificial Intelligence in 

manufacturing, and personalization of 

products/services and asset maintenance being 

areas of lowest applications of Artificial 

Intelligence in manufacturing (Dilmegani, 2020). 

 

3.3 3D Printing and Additive 

Manufacturing 

One of the main enablers of customised 

manufacturing at scale is 3D printing and additive 

manufacturing. As its name implies additive 

manufacturing adds material to create an object 

and differs from traditional creation of objects by 

milling, machining, carving, shaping which 

involve material removal. According to 

Tumbleston et al. (2015), additive manufacturing 

processes such as 3D printing utilise time-

consuming, stepwise layer-by-layer approaches 

for fabricating objects. In essence, 3D printing 

employs the use of computer-aided design (CAD) 

software or 3D object scanners which slice the 

object into ultra-thin layers and direct the path of 

a nozzle or print head for precisely depositing 

material in accurate geometric shapes, layer by 

layer, with each successive layer bonding to the 

preceding layer of melted or partially melted 

material to create the object. Therefore, 3D 

printers are used for giving physical form to 

digital designs ranging from personalised medical 

and dental products to adapted airplane and 

automobile parts.  

A variety of different additive manufacturing 

processes exists such as powder bed fusion 

technology which melts or partially melts ultra-

fine layers of material in a three-dimensional 

space using lasers, electron beams, or thermal 

print heads, blasting away superfluous powder 

from the item as the process completes; binder 

jetting where alternate layers of powdered 

material and a liquid binder are laid down by the 

print head; directed energy deposition where 

either a 

wire of filament feed stock or powder is melted by 

an electron beam gun or laser installed on a four-

axis or five-axis arm; material extrusion where 

extruded polymers are drawn through a heated 

nozzle mounted on a movable arm, with the 

nozzle moving horizontally and the bed moving 

vertically, allowing the melted material to be built 

layer after layer with proper adhesion between 

layers achieved through temperature control or the 

use of chemical bonding agents; material jetting 

where a print head swings back and forth, similar 

to a 2D inkjet printer's head, but this time on the 

x, y, and z axes to build 3D objects, with layers 

hardening as they cool or curing with UV light; 

laminated object manufacturing and ultrasonic 

additive manufacturing which are two sheet 

lamination methods: laminated object 

manufacturing uses alternate layers of paper and 

glue, and ultrasonic additive manufacturing uses 

thin metal sheets connected by ultrasonic 

welding; and vat photopolymerization where in a 

vat of liquid resin photopolymer, an object is 

formed, with the photopolymerization process 

curing each microfine resin layer using ultraviolet 

light carefully directed by mirrors.  

Figure 3 shows the various ways 3D printing has 

been implemented. 

  

 
Figure 3: Implementations of 3D Printing 

(Olsson et al., 2019). 

 

From Figure 3, there is a low implementation of 

3D printing, with the technology being 

implemented mostly in experimenting and 

development of pilot projects. Though 3D 
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printing is 

predominantly used to generate prototypes and 

mock-ups as a result of the high cost of 

production, the impact of 3D printing is both 

disruptive and revolutionary (Garret, 2014). 

However, 3D printing in manufacturing is 

expected to mature in the coming years, changing 

from use in experimentations and prototype 

productions to production of low volume, bespoke 

and high-value products (Gebler et al., 2014; 

Tumbleston et al., 2015). The advantages of 3D 

printing for industry are ability to print many 

geometric structures, simplification of the product 

design process, relative environmental 

friendliness, increased flexibility, reduced 

warehousing costs and enabling adoption of mass 

customisation business strategy (Economist, 

2011; Yin et al., 2017). However, the 

disadvantages of 3D printing are that the 3D 

printing process takes time, 3D printed parts may 

not be as sturdy and might not meet tolerances 

(Yin et al., 2017). 

 

4. CONCLUSION 

This research contributes to knowledge by 

providing a description of the latest technologies 

that are helping production companies improve 

productivity in the present day. The research has 

stated various challenges of traditional production 

systems and expounded on the various industrial 

revolutions and their technologies, concentrating 

on the technologies of the current Industry 4.0 and 

those of the future Industry 5.0 which together 

constitute the leading-edge technologies of 

production and manufacturing engineering. These 

leading-edge production engineering technologies 

are robotics, smart factories and Internet of Things 

(IoT); Artificial Intelligence and predictive 

maintenance; 3D printing and additive 

manufacturing. It is obvious that with the advent 

of these leading-edge technologies, organisations 

implementing them are experiencing increased 

productivity with a reduction in production times 

and cost of getting products to market. Therefore, 

by the use of robots and smart facilities which are 

more agile, versatile and clever, various 

production processes are getting faster, cheaper 

and more precise.  
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