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ABSTRACT 
This paper presents the outcome of our research on the 

optimization of output in the present-day Nigerian power 

stations using Afam power plant as a case study.  Afam 

power plant is a representative of the about 23 power 

generating plants connected to the Nigerian national grid 

which has a total installed capacity of circa 12,000MW. 

This work has been done using the formulation of various 

cases of load dispatch equations relevant to the subject and 

hybrid computational approach i.e., Non-Linear 

Programming (NLP) optimization method. The authors 

have applied the various formulations to the operations 

information at Afam Power Plant. Results revealed that for 

load dispatch without power generator constraints, 

generated power is about 650MW, while for load dispatch 

with power generator constraints, generated power is about 

610MW. The results also show that Afam power plant did 

not produce maximum output in most of the years between 

2010 and 2016. The worst years were 2011, 2014 and 2016 

due to obvious issues ranging from maintenance downtime 

to unavailability of transmission line to receive generated 

power. The research shows that the output of Afam power 

plant started to improve from 2017 to first Quarter of 2020. 

Further analysis shows that for system losses and generator 

limits, dispatch and total cost in naira per hour for a given 

number of generators load demand can be determined. 
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1.0 INTRODUCTION 

Electrification utility is targeted at making 

available better quality and dependable electrical 

generation to consumers at an affordable cost 

while meeting the operating limits of generation 

equipment (Ahiakwo, 2019). The operator 

communicates the economic load dispatch 

problem that determines the best combination of 

the generated output of all online generators to 

reduce the overall fuel cost. Some classical 

algorithms like Newton methods, lambda iteration 

and gradient method would have solved economic 

load dispatch problems if the curves in fuel-cost 

of the generation units are piecewise linear and 

monotonically growing. But, in the real sense of 

it, the input-output characteristics with respect to 

the generation units are non-linear, discrete and 

non-smooth in nature leading to prohibitive ramp 

rate limits, multi fuel effects and operating zones 

(Alawode, 2011).  

Power system optimization came into focus as a 

result of developments in computing and 

optimization theories. In the early 20th century, 

optimal power flow problems were resolved by 

engineers and technical operators with in-depth 

experience using judgment, outdated, and 

primitive tools, which include specialized rules 

and analog network analyzer. Later, 

computational devices were introduced to help 

experienced operators. 

In power systems, three types of problems 

commonly encountered include: 

(i) Economic dispatch  

(ii) Load flow (power flow) 

(iii) Optimal Power flow 

Economic dispatch problem analyzes and 

describes different formulation to determine and 

find out the least-cost generation dispatch to 

enable a given load to be served with a reserve 

margin. These formulations most times, do not 

use power flow constraints. The load flow 

problem refers to load transmission and load 

network equations. Load flow (power flow) 

techniques are mathematical models which are 

not feasible optimal solutions. Present Power flow 

equations do not take note of generator reactive 
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power limits 

or transmission line limits. These constraints are 

written and programmed into one of many 

available power flow softwares. The third type 

(the optimal power flow) finds the optimal 

solution to a given objective function subject to 

the power flow constraints and many other 

constraints which include transmission stability, 

voltage constraints, generator minimum output 

constraints as well as limits on switching 

mechanical equipment. Optimal Power Flow 

(OPF) is also known as Security-Constrained 

Economic Dispatch (SCED). There are several 

formulations with different constraints, objective 

functions and solution techniques that have been 

seen as optimal power flow. 

Huneault and Galliana (1994) gave an extensive 

analysis of optimal power flow problems with 

over 300 articles surveyed. After citing over 200 

articles, they concluded that the Optimal Power 

Flow (OPF) history was characterized as the 

application of ever-increasing powerful 

optimization tools to a problem. Their paper 

outlined OPF evolutions grouped by various 

solution methods. According to them, the various 

solution methods included gradients techniques, 

quadratic programming, penalty techniques and 

linear programming. The authors further asserted 

that the OPF was still a complex mathematical 

problem because the algorithms could not 

compute quickly as required and they were prone 

to serious errors and convergence problems. 

According to Muiler (1998), researchers later in 

the course of their various studies identified 

challenges associated with solving the OPF. 

These challenges include modeling discrete 

variables, computing time, solution reliability, 

local minima and lack of uniform problem 

definition. It was opined that today, with advances 

in Mixed Integer Programming (MIP), discrete 

variables could therefore be timely modeled. 
 

The most comprehensive survey was put forward 

on optimal power dispatch and as a result of IEEE 

research group presented a bibliography analysis 

and survey of major economic security function in 

1981 (Khamees et al., 2016). Several surveys 

were 

carried out on economic dispatch method 

(Chowdhurry, 1999). In the quest to put forward 

an efficient workable methodology, a review of 

some selected optimal power flow techniques was 

presented. It was asserted that the solution 

methodologies of OPF problems can be broadly 

grouped into two major categories: classical 

(conventional) methods and intelligent methods. 

He further analyzed an in-depth sub-division of 

these categories in a tree diagram as shown in Fig 

1. 

 
Figure 1 OPF Tree Diagram 

 

2.0 MATERIALS AND METHODS 

2.1 Effective Load Dispatch Cases 

Case 1: Optimal Dispatch and Total Cost   

Optimal dispatch and total cost are calculated as: 

2

iiiiii PaPbCF ++=
    (1) 

If i = 1, 2, 3, 4……. N number of generators:  

2

111111 PaPbCF ++=                (2) 

Similarly, 

2

222222 PaPbCF ++=     (3) 

2

333333 PaPbCF ++=     (4) 
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2

444444 PaPbCF ++=     (5) 

    

++= NNNNNN PaPbCF    (6) 

Considering the system losses and generator 

limits, dispatch and total cost in N/hr for N-

generator for the given load demand can be 

determined.  

Case 2: Output Maximization and Operational 

Cost  

The major cost of plant operation is fuel. The fuel 

cost curve is assumed to be parabolic of the form,  

2

iiiiii PCPbaC ++=   (7) 

In this case, the incremental fuel - cost curve 

(slope) of the fuel cost curve given as:  

iii

i

i bPC
dp

dc
+= 2          (8) 

 

Case 3: To Optimize the Total Cost of 

Generation  

Supplying the given load demand, PD given as: 


=

=
ng

i

it CC
1

       (9) 

Where: 

2

iiiiii PCPgbaC ++=       

(10) 

Then; 

( )
=

++=
n

i

iiiiit PCPgbaC
1

2      

(11) 

Subject to constraint, given as: 


=

=
ng

i

Di PP
1

     (12) 

If the 

number of generators is ng while total number of 

generators is n; this can be represented as: 

 

1P

 

Figure 2 Cost Optimization of Connected 

Generators 

The minimal incremental function (λ) can be 

represented as: 









−+= 

=

ng

i

iDt PPC
1

    (13) 

Obeying the necessary condition for 

minimization given as: 

O
pi

=



     (14) 

O=







     (15) 

The first condition given as: 

( ) 010 =−+





i

t

p

c
    (16) 

But,  

ngt CCCC +++= ...32  

Therefore, 

==




i

i

i

t

dp

dc

p

c
     (17) 

Thus, the condition for optimal dispatch is given 

as: 
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ngi
dp

dc

i

i ....,.........2,1, ==     (18) 

Thus, rewriting (18) gives: 


=

=
ng

i

it CC
1

     

 (19) 

 

This can be represented as: 

( )
=

++=
ng

i

iiiiit PCPbaC
1

2     (20) 

Differentiating (20) gives:  

iii

i

t bPC
p

c
+=




2     (21) 

iii bPC +=2      (22) 

Rearranging (22) gives: 


=

=
−ng

i

i

i

i P
C

b

1 2


      (23) 

Similarly, 


−

=
−ng

i

D

i

i P
C

b

1 2


      (24) 

Solving for λ, we have; 

∑ (
𝜆

2𝐶𝑖
−

𝑏𝑖

2𝐶𝑖
)

𝑛𝑔
𝑖=1 = 𝑃𝐷     (25) 

Or  

=+ iii PCb 2      (26) 

The second condition states: 

∑ 𝑃𝑖
𝑛𝑔
𝑖=1 =

𝑃𝐷(𝑤ℎ𝑖𝑐ℎ 𝑖𝑠 𝑡ℎ𝑒 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛)  

Therefore, for (λ) optional generation, it is stated 

as; 

i

i
i

C

b
P

2

−
=


     (27) 

Thus, 


=

=
−ng

i

D

i

i P
C

b

1 2


     (28) 

Hence, λ-solving for optimal generation is given 

as:  





=

=

+=

ng

i i

ng

i i

i
D

C

C

b
P

1

1

2

1

2


     (29) 

However, optimizing by iteration of (29) gives:  

( ) 
=

=
−

=
ng

i

D

i

i P
C

b
f

1 2


     (30) 

Making use of the first order expressions by 

Taylor’s series expansion around point λ(k) gives; 

( )
( ) ( )

( )
D

k

k

k
PD

d

df
f =








+ 






   (31) 

But  

( ) 
==

+=
ng

i i

i
D

ng

i

Ci
C

b
PY

11

2
2

   (32) 

Or 

( ) 
= =

+=
ng

i

ng

i i

i
Di

C

b
PC

1 1 22
1    (33) 

( )



=

=

+=

ng

i

i

ng

i

iiD

C

CbP

1

1

21

2

    (34) 

Hence; 

( ) ( )
( ) ( ) ( )k

ng
k

iDk

Dk

d

df

PP

d

df

fP
D










−

=










−
=












   (35) 

Or  

=
𝛥𝑃(𝑘)

(
𝑑𝑓(𝛬)

𝑑𝛬
)
(𝑘)     (36) 
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=
𝛥𝑃(𝑘)

∑(𝑑𝑝𝑖 𝑑𝜆⁄ )𝑘

     (37) 

Case 4: Transmission Loss Equation  

The partial derivative (
i

L

rPG

rp
) is regarded as 

Incremental Transmission Loss (ITL) related to 

the generating plant.  

There are several approaches used to design a 

transmission loss model, which is related to 

transmission loss through the means of generation 

energy through its B- coefficients, also used in 

loss management with respect to profitability 

planning between plant loads. Loss formula 

through B-coefficients is generally given as;  

 
= = =

++=
N

i

N

ij

N

j

ooiioiiL BPGBBGPGP
1 1

 (38) 

Case 5: Optimal Schedule for Output 

Maximization (Afam Generating Station) 

Factors influencing the minimum cost of power 

generation are as follow: 

i. Operating efficiency of prime mover  

ii. Fuel costs 

iii. Transmission losses  
 

Case 6: Economic Dispatch and Generator 

Limits 

Economic load dispatch regarding generator 

limit can be done by; 

i. Minimizing the objective or cost function 

overall plant  

ii. Use of a quadratic polynomial cost 

function for each plant: 


=

++=
ng

i

iiiii PCPbatotalC
1

2
    (39) 

iii. using total demand being equal to the sum 

of generators’ output: equality constraint 

That is, 

∑ 𝑃𝑖 = 𝑃𝐷𝑒𝑚𝑎𝑛𝑑
𝑛𝑔
𝑖=1     (40) 

Case 7: 

Incremental Loss (λ) for Generating Plants (n = 

1,2,3….ng) 

Plant 1:  
𝑑𝑐1

𝑑𝑝1
(𝑁 𝑀𝑊ℎ⁄ ) 

Plant 2:  
𝑑𝑐2

𝑑𝑝2
(𝑁 𝑀𝑊ℎ⁄ ) 

Plant 3:  
𝑑𝑐3

𝑑𝑝3
(𝑁 𝑀𝑊ℎ⁄ ) 

Plant 4:  
𝑑𝑐4

𝑑𝑝4
(𝑁 𝑀𝑊ℎ⁄ ) 

Plant 5:  
𝑑𝑐5

𝑑𝑝5
(𝑁 𝑀𝑊ℎ⁄ ) 

Plant 6:  
𝑑𝑐6

𝑑𝑝6
(𝑁 𝑀𝑊ℎ⁄ ) 

.  . 

Plant N:  
𝑑𝑐𝑁

𝑑𝑝𝑁
(𝑀𝑊) 

Case 8: Plant Coefficients 

2

iiiiii PCPbaC ++=   

𝐶𝑒𝑓𝑓 𝑜𝑓 𝑝𝑙𝑎𝑛𝑡 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦         =  

[
 
 
 
 
 
𝑎1𝑏1𝐶1

𝑎2𝑏2𝐶2

𝑎3𝑏3𝐶3

𝑎4𝑏4𝐶4

𝑎5𝑏5𝐶5

𝑎6𝑏6𝐶6]
 
 
 
 
 

=

[
 
 
 
 
 
0.22     58       1.14
0.17     74       072
0.05     69        1.8
0.06     69         2.2
0.04      69        3.15
0.04      70.5     2.70]

 
 
 
 
 

 

Plant demand: MW 

2.3 Generator Fuel Cost Model for Afam 

Power Plant 

For Afam power plant generators configuration, 

optimization of the sum of all fuel cost, 𝐹𝑇 , 

associated with the generators is expressed as 

follows: 

 

𝐹𝑇 = 𝐹1 + 𝐹2 + ⋯𝐹𝑁𝐺                                          (41) 

 

Modifying (41), 

  

𝐹𝑇 = ∑ 𝐹𝑖(𝑃𝑔𝑖)
𝑛
𝑖=1                                                (42) 
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Equation 

(42) is limited to power balance and unit 

generation limit. Fuel cost optimization in general 

could be modelled using Lagrange Multiplier 

analysis. This helps to convert a constraint 

problem into a problem that is unconstrained 

(Shunpike, 2018).  The multiplication with 

Lagrange multiplier and the addition of constraint 

function to objective function is expressed as 

shown: 

 
𝜌(𝑃𝑔𝑖 , 𝜆) = 𝐹𝑇 + 𝜆(𝑃𝑗 − ∑ 𝑃𝑔𝑖

𝑛𝑔
𝑖=0 )      

(43) 

 

Where 𝜆 represent the Lagrange Multiplier. 

Then, 

𝜕𝜌(𝑃𝑔𝑖,𝜆)

𝜕𝑃𝑔𝑖
=

𝜕𝐹𝑇

𝜕𝑃𝑔𝑖
− 𝜆 = 0                                           (44) 

 Simplifying (47), 

                  
𝜕𝜌(𝑃𝑔𝑖,𝜆)

𝜕𝜆
= 𝑃𝑑 − ∑ 𝑃𝑔𝑖

𝑛𝑔
𝑖=1 = 0                                  (45)     

From (44), 

𝜕𝐹𝑇

𝜕𝑃𝑔𝑖
= 𝜆         𝑖 = 1,2,3… . 𝑁𝑔                                   (46)      

Evaluating (42) and (46), we have: 

𝜕𝐹𝑇

𝜕𝑃𝑔𝑖
=

𝜕 ∑ 𝑃𝑔𝑖
𝑁𝑔
𝑖=1

𝜕𝑃𝑔𝑖
=  𝜆                                        (47) 

Therefore,                   
𝜕𝐹1(𝑃𝑔𝑖)

𝑑𝑃𝑔𝑖
=

𝜕𝐹2(𝑃𝑔2)

𝑑𝑃𝑔2
= ⋯

𝜕𝐹𝑛(𝑃𝑔𝑛)

𝑑𝑃𝑔𝑛
= 𝜆  (48) 

  

Equation (48) expresses clearly that the optimal 

loading of generator is feasible at the point where 

the input-output slopes. Therefore, the 

characteristics of all associated generators are the 

same. In addition to this assertion, the optimal 

dispatch is equal to the point of same amount of 

incremental cost for all the system generators.  

 

2.4 Power Loss Integration Optimization 

Model for Afam Power Plant 

The model above did not consider transmission 

losses since transmission losses most times vary 

between 5 to 10 percent of the entire system load. 

It is 

therefore unrealistic to neglect transmission 

losses. Modifying (41) further, the 𝑃𝑙𝑜𝑠𝑠   
represents the active power loss in the entire 

system and is modelled using (43) as the 

generation limit: 

∑ 𝑃𝑔𝑖 = 𝑃𝑑 +
𝑛𝑔
𝑖=1 𝑃𝑙𝑜𝑠𝑠   (49) 

where 𝑃𝑑 = power demand 

The major portion of the operating cost is 

changing the associated transmission losses in a 

given generator with its percentage of fuel cost. It 

must be noted that the transmission losses in Afam 

power plant are analyzed as a function of 

associated generator power with respect to B- 

coefficient as shown: 

𝑃𝑙𝑜𝑠𝑠 = ∑ ∑ 𝑃𝑖  
𝑁
𝑗=1

𝑁
𝑖=1 𝐵𝑖𝑗𝑃𝑗 (50) 

 

Where N and 𝐵𝑖𝑗 represent the overall number of 

buses from the system and loss coefficient that 

exist between individual buses respectively. 

𝑃𝑗 is the real power injected into various node 

buses. 

Hence, applying the Lagrange multiplier to 

optimize the power loss, 

𝜌(𝑃𝑔𝑖 , 𝜆) = 𝐹𝑇 + 𝜆(𝑃𝑑 + 𝑃𝑙𝑜𝑠𝑠 − ∑ 𝑃𝑔𝑖
𝑛𝑔
𝑖=1 )      

(51) 

 
𝜕𝜌(𝑃𝑔𝑖,𝜆)

𝜕𝑃𝑔𝑖
=

𝜕𝐹𝑇

𝜕𝑃𝑔𝑖
− 𝜆 (

𝜕𝑃𝑙𝑜𝑠𝑠

𝜕𝑃𝑔𝑖
− 1)                               (52) 

𝜕𝐹𝑇

𝜕𝑃𝑔𝑖
=  𝜆 (

𝜕𝑃𝑙𝑜𝑠𝑠

𝜕𝑃𝑔𝑖
− 1)                  𝑖=1,2…….ng            

(53) 

𝜕𝜌(𝑃𝑔𝑖,𝜆)

𝜕𝜆
= 𝑃𝑑 + 𝑃𝑙𝑜𝑠𝑠 − ∑ 𝑃𝑔𝑖

𝑛𝑔
𝑖=1 = 0                        (54) 

𝜕𝑃𝑙𝑜𝑠𝑠

𝜕𝑃𝑔𝑖
 represents the incremental transmission 

losses (Braide et al., 2017).  

3.0 RESULTS AND DISCUSSION 

Raw operation data were obtained from Afam 

power plant as shown in the Table 1 which is for 

http://www.rsujnet.org/index.php/publications/2021-edition
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January to 

December 2011. Table 2, on the other hand, 

shows computed operational data for the whole 

period under review i.e., 2011 to 2020. Non-

Linear Programming (NLP) method was used 

during the computations. 

 

 

 

Table 1 Computed Operational Data from Afam Power Plant Output for 2011. 

Yea

r  
Month 

Energy 

Generate

d (EG) 

(MWH) 

Unit 

Price 

Energy 

Charged 

(EC) (N) 

Energy 

Charge 

Optimizatio

n (ECO) (N) 

Total 

EG/Yr 

(MWH) 

EC Yearly 

Total (N) 

ECO Yearly 

Total (N) 

2011 January 0 5102 0         

  February 0 5102 0         

  March 0 5102 0 0       

  April 0 5102 0 0       

  May 0 5102 0 0       

  June 0 5102 0 0       

  July 0 5102 0 0       

  August 0 5102 0 0       

  

Septembe

r 19002.90 5102 96952795.8 96952795.8       

  October 32835.00 5102 167524170 70571374.2       

  

Novembe

r 40213.00 5102 205166726 

134595351.

8       

  

Decembe

r 25271.40 5102 

128934682.

8 91292126.8 

117322.

3 

598578374.

6 

393411648.

6 

 

Table 2 10-year Computed Operational Data 

from Afam Power Plant. 

SN YEAR TEG/YEAR 

(MW)  

1 2011 117,322.30 

2 2012 382,724.10 

3 2013 254,548.70 

4 2014 267,062 

5 2015 6,928 

6 2016 0 

7 2017 5,203.55 

8 2018 10,111.89 

9 2019 192,51.73 

10 2020 10,680.73 

Results and discussions from the analysis of 

Tables 1 & 2 are the same as for Figure 6. 

Deductions in this paper reveal that there are 

various ways to theoretically evaluate a power 

plant with the aim of maximizing its output. In the 

same vein, the load dispatch capability of a power 

plant may also be evaluated using algorithms and 

equations with obvious consideration of various 

viable cases.  

For system losses and generator limits, dispatch 

and total cost in naira per hour for N-generator for 

a given load demand can be determined. Cost of 

operating a power is majorly incident on the fuel. 

It was deduced that the fuel cost equation/curve is 

parabolic while the fuel-cost relation is somewhat 

linear as deduced in (11). In the various cases 

considered for the economic load dispatch 

derivations, it was observed that there is 

maximum output from the power plant if cost of 

fuel is minimized. The onus is now on power plant 

operators to ensure that all that is required are 

done during maintenance to reduce fuel 

consumption. This may be achieved with regular 
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inspection 

maintenance. Case 3 clearly reveals that needed 

demand (or output of a power plant) may be 

increased if the total cost for ‘n’ generators are 

optimized. This means that the overall output of a 

power plant is the sum total of the efficient or 

optimized output of individual generators. 

Furthermore, transmission losses were also 

considered and the deduced equation shows that 

such losses may be minimized by minimizing the 

B-coefficients of the transmission lines. The 

operations schedule applied by power generating 

plants also influences the efficiency of such power 

plant.  

From (9) & (10) and Fig 3, when applied to Afam 

power plant in relation this research, the 

incremental fuel cost curve lies within the 

boundaries of lines ‘a’ and ‘b’. It is deduced from 

the results of the application of the equations that 

power output increases with increase intake of 

fuel which in turn means increase in cost. The 

efficiency of any power plant (and Afam is not left 

out) depends, however, on the total load demand 

handled at any point on the curve. At Pgmin fuel 

consumed is less than what is consumed at Pgmax. 

Curve b shows the trend for an optimal operation 

of the Afam power plant that will ensure 

maximization of output to the grid. The cost of 

fuel consumed is minimized when output power 

takes maximum load.  

  

Figure 3 Incremental Cost Curve of Power 

Generation (Dhamanda et al., 2013) 

Furthermore, considering case 6 discussed above, 

economic load dispatch regarding generator limit 

gives different results when considered with 

constraints and without constraints. Applying the 

quadratic polynomial cost function for each plant 

with a 

number of iterations, the following curves were 

derived. 

For another analysis different from the above, 

considering three of the generators in the power 

plant, Figs 4 and 5 show that the ability to dispatch 

generated load is comparatively higher without 

constraints. It is observed that in Fig 4 (the case of 

load dispatch without power generator 

constraints), PG is about 650MW, while in Fig 5 

(the case of load dispatch with power generator 

constraints), PG is about 610MW.   

 

Figure 4 Load Dispatch without Power 

Generator Constraints 

 

Figure 5 Load Dispatch with Power 

Generator Constraints 

Considering the total generation at Afam within 

the period 2010 to 2020, Figure 6 shows a 

graphical result obtained. Afam power plant did 

not produce maximally in most of the years 
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between 

2010 and 2016 (indicated by the purple trend/line 

on the graph). The worst years were 2011, 2014 

and 2016 due to obvious issues ranging from 

maintenance downtime to unavailability of 

transmission line to receive generated power. The 

green trend/line is the optimised (maximized) 

output i.e., what the output should have been if the 

plant is maximized. The deep (indicated on the 

graph) experienced in 2016 was due to a complete 

outage of all Afam Gas turbine Generators. The 

plant was brought back on stream by the operators 

towards 2017 when power output was averagely 

increasing to where it was in the first quarter of 

2020 when the plant was visited by the author.  

• TEC is Total Energy Charges (purple line) 

• OTEC is Optimised TEC (green line) 

 

Figure 6 Graphical Representation of 

Percentage output of Afam Power Plant. 

4.0 CONCLUSION 

Models carried out in this report as applied to 

Afam power plant show that there is room for 

optimization at the plant. The fuel cost 

optimization model, when applied in real terms, is 

indicative that the total fuel consumed is not 

commensurate with the power output from the 

plant. The issue at Afam was, however, traced to 

more of fuel quality.  Dirt and debris are common 

composition of fuel that is available to power 

plants in Nigeria and the APP is not left out, 

though its fuel is sourced mainly from Okoloma, 

Agbada and Obigbo gas plants belonging to 

SPDC. Poor quality of fuel leads to fouling of the 

internal parts of the core engine i.e., the 

compressor turbine and the combustion chambers. 

Once that 

(fouling) happens over time, the output of the gas 

turbine drops, and the efficiency is reduced. 

Losses due to transmission lines were also 

modelled and results confirmed that transmission 

losses also weigh on Afam Power Plant. This 

happens with the outage of transmission lines 

used for the evacuation of generated power – 

132kV and 330kV lines - as the case may be. 

Evacuation line outages could be due to line 

faults, switchgear earth-faults, and earth-leakages. 

These force the operators to shut-down the Gas 

Turbine Generators since there is nowhere to 

evacuate generated power to. 

The results validate the equations and 

formulations in this paper, as applied to Afam 

power plant in the output of the generators during 

operations. Findings from the research will help in 

predicting the plant operating envelope based on 

data acquired from the plant operators. This 

knowledge provides reference data sets and 

graphical trend analysis which are veritable tools 

for plant analysis. 
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